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Abstract

In this paper, a parallel hybrid heuristic is developed for the multicommodity capacitated

location problem with balancing requirements. The hybrid involves variable neighborhood

descent (VND) and slope scaling (SS). Both methods evolve in parallel within a master–slave

architecture where the slave processes communicate through adaptive memories. Numerical

results are reported on different types of randomly generated instances, using an increasing

number of processors and different distributions of processes between SS and VND.
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1. Introduction

This paper describes a parallel approach for solving a variant of the multicom-

modity location problem with balancing requirements [2]. This problem comes from
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an industrial application related to the management of a heterogeneous fleet of con-

tainers for an international maritime shipping company. Once a ship arrives at the

port, the company has to deliver the loaded containers, which may come in several

types and sizes, to designated in-land destinations. Following their unloading by the

importing customer, empty containers are moved to a depot. Later on, they may be
delivered to customers requesting containers for subsequent shipping of their own

products. Due to regional disparities in empty container availabilities and needs

throughout the network, balancing movements of empty containers among the de-

pots are required. This characteristic differentiates the problem from classical loca-

tion–allocation applications.

Thus, the problem is to locate the depots which collect the supply of empty con-

tainers to satisfy the demand for empty containers, while minimizing the total ope-

rating costs. These include the cost of opening and operating the depots and the cost
generated by customer–depot and interdepot movements. Different exact and heuris-

tic approaches have been proposed in the past for the uncapacitated version of this

problem [3–7,9]. However, a more challenging capacitated version, where each depot

has a fixed and finite capacity, has only been recently addressed in [8] (a review of

other classes of capacitated facility location problems can be found in [16]). The pre-

sent paper proposes a parallel search framework for the same problem where vari-

able neighborhood descent (VND) and slope scaling (SS) processes communicate

through adaptive memories. Although presented in the context of a particular appli-
cation, the proposed framework could be used to solve other complex optimization

problems, through the involvement of different types of cooperating heuristics.

The organization of the paper is the following. In Section 2, a mathematical formu-

lation of the multicommodity capacitated location problem with balancing require-

ments (MCLB) is proposed. This formulation is used to isolate multicommodity

minimum cost network flow subproblems (MMCFs), which are exploited by SS

and VND. These two heuristics are then briefly sketched in Section 3. A parallel im-

plementation of a hybrid framework involving both heuristics is then presented in
Section 4. Computational experiments on randomly generated test problems with dif-

ferent characteristics are reported in Section 5, using an increasing number of proces-

sors and different distributions of processes between SS and VND. Concluding

remarks follow in Section 6.

2. Problem formulation

To formulate the problem, we consider a directed network G ¼ ðN ;AÞ, where N is

the set of nodes and A is the set of arcs. There are several commodities (types of con-

tainers) moving through the network which are represented by set K. The set of

nodes can be partitioned into the set of customer nodes C and the set of depots

D. For each depot j 2 D, we define its supply and demand customers as Cs
j ¼

fi 2 C : ði; jÞ 2 Ag and Cd
j ¼ fi 2 C : ðj; iÞ 2 Ag, respectively. We also assume that

there is at least one supply or demand customer adjacent to each depot, that is,

Cs
j [ Cd

j 6¼ ;; 8j 2 D. The sets of all supply and demand customers thus correspond
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to Cs ¼
S

j2D C
s
j and Cd ¼

S
j2D C

d
j , respectively. For each node i 2 N (depot or cus-

tomer), we also define the sets of depots adjacent to this node in both directions

D�
i ¼ fj 2 D : ðj; iÞ 2 Ag and Dþ

i ¼ fj 2 D : ði; jÞ 2 Ag.
Since there are no arcs between pairs of customers, the set of arcs can be parti-

tioned into three subsets:

• customer-to-depot arcs ACD ¼ fði; jÞ 2 A : i 2 C; j 2 Dg;
• depot-to-customer arcs ADC ¼ fðj; iÞ 2 A : j 2 D; i 2 Cg;
• depot-to-depot arcs ADD ¼ fðl; jÞ 2 A : l 2 D; j 2 Dg.

The problem consists of minimizing the costs incurred by moving flows of com-

modities through the network to satisfy the supplies at origins and the demands at

destinations. For each customer i 2 Cs, the supply of commodity k is noted ski , while
for each customer i 2 Cd , the demand for commodity k is noted dk

i . All supplies and

demands are assumed to be non-negative and deterministic. A non-negative cost ckij is
incurred for each unit of flow of commodity k moving on arc ði; jÞ. In addition, for

each depot j 2 D, a non-negative fixed cost fj is incurred if the depot is opened. The

problem is further complicated by the presence of a fixed capacity qj on the volume

of all commodities which can transit through depot j 2 D, where the volume of one
unit of commodity k is noted vk.

Let xkij represent the flow of commodity k moving on arc ði; jÞ, and yj be the binary
location variable with value 1 if depot j is opened, and value 0 otherwise. The prob-

lem is then formulated as:

Z ¼ min
X
j2D

fjyj þ
X
k2K

X
ði;jÞ2ACD

ckijx
k
ij

 
þ

X
ðj;iÞ2ADC

ckjix
k
ji þ

X
ðl;jÞ2ADD

ckljx
k
lj

!
; ð1Þ

subject toX
j2Dþ

i

xkij ¼ ski ; 8i 2 Cs; k 2 K; ð2Þ

X
j2D�

i

xkji ¼ dk
i ; 8i 2 Cd ; k 2 K; ð3Þ

X
i2Cd

j

xkji þ
X
l2Dþ

j

xkjl �
X
i2Cs

j

xkij �
X
l2D�

j

xklj ¼ 0; 8j 2 D; k 2 K; ð4Þ

X
k2K

vk
X
i2Cs

j

xkij

0@ þ
X
l2D�

j

xklj

1A6 qjyj; 8j 2 D; ð5Þ

xkij P 0; 8ði; jÞ 2 A; k 2 K; ð6Þ

yj 2 f0; 1g; 8j 2 D: ð7Þ
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Constraints (2) and (3) ensure that supply and demand requirements are met.

Constraints (4) and (5) are the flow conservation constraints and capacity constraints

for each depot, respectively. Constraints (5) also forbid customer-related movements

through closed depots.

The following constraints, (8) and (9), which are redundant, are also added to the
above formulation when solving large-scale instances of the MCLB with a state-of-

the-art MIP code (see Section 5). They have proven to significantly improve the qua-

lity of the lower bounds obtained through the LP relaxation.

xkij 6 ski yj; 8j 2 D; i 2 Cs
j ; k 2 K; ð8Þ

xkji 6 dk
i yj; 8j 2 D; i 2 Cd

j ; k 2 K: ð9Þ

Upper bounds on the optimal value of the MCLB can be derived by fixing both

the vector of location variables y to some value �yy and the vector of linear costs c to
some value �cc. We then obtain the following MMCF:

min
X
k2K

X
ði;jÞ2ACD

�cckijx
k
ij

 
þ

X
ðj;iÞ2ADC

�cckjix
k
ji þ

X
ðl;jÞ2ADD

�cckljx
k
lj

!
; ð10Þ

subject to constraints (2)–(4), (6) and

X
k2K

vk
X
i2Cs

j

xkij

0@ þ
X
l2D�

j

xklj

1A6 qj�yyj; 8j 2 D: ð11Þ

Assuming that this problem has an optimal solution, ~xx, an upper bound on the

optimal value of the MCLB is then given by:

Zð~xx; ~yyÞ ¼
X
j2D

fj~yyj þ
X
k2K

X
ði;jÞ2ACD

ckij~xx
k
ij

 
þ

X
ðj;iÞ2ADC

ckji~xx
k
ji þ

X
ðl;jÞ2ADD

cklj~xx
k
jl

!
; ð12Þ

where

~yyj ¼
1; if

P
i2Cs

j

~xxkij þ
P
l2D�

j

~xxklj

 !
> 0;

0; otherwise;

8><>: 8j 2 D: ð13Þ

The SS procedure considers MMCFs with all depots open (i.e., �yyj ¼ 1; 8j 2 D), but
modifies the linear costs �cc at each iteration. The VND method solves a series of

MMCFs with �cc ¼ c (i.e., the linear costs are not modified), but with y fixed to values
�yy determined by the search procedure. Both heuristic procedures are described next.

3. Heuristics

In the sequential algorithm proposed in [8], SS is used to generate an initial start-

ing solution for a tabu search heuristic. In the parallel framework presented here, SS
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is still used, but tabu search is replaced by a less CPU-intensive VND search. In the

following, we briefly describe SS, before proceeding with VND.

3.1. Slope scaling

SS is an iterative procedure, where successive MMCFs are solved, based on modi-

fied linear costs (see [12–14] for recent successful applications of this type of heuris-

tic for solving non-convex piecewise linear network flow problems). In our context,

all depots are implicitly open in the formulation of the MMCF (i.e., �yyj ¼ 1; 8j 2 D),
but the linear costs, �cc, are modified to reflect the contribution of the fixed costs.

More specifically, given a solution ~xx to some MMCF formulation, and assuming

that ~yy is computed according to (13), the linear costs are modified so thatX
k2K

X
ði;jÞ2ACD

�cckij~xx
k
ij

 
þ

X
ðj;iÞ2ADC

�cckji~xx
k
ji þ

X
ðl:jÞ2ADD

�ccklj~xx
k
lj

!
¼ Zð~xx; ~yyÞ; ð14Þ

where Zð~xx; ~yyÞ is the total cost of the feasible solution ð~xx; ~yyÞ given by Eq. (12). In other
words, the goal is to solve an MMCF with modified costs �cc that reflect exactly the

total cost, both linear and fixed, incurred by this solution (if the solution remains the
same). To compute the modified costs, we use the total volume in-transit through

each depot j, defined for any feasible flow ~xx, as:

eXXj ¼
X
k2K

vk
X
i2Cs

j

~xxkij

0@ þ
X
l2D�

j

~xxklj

1A: ð15Þ

The modification to the linear costs proceeds as follows. We denote the modified

cost associated with arc ði; jÞ and commodity k at iteration tP 0 as �cckðtÞij . Similarly, we

denote by eXX t
j the total volume in-transit through depot j at iteration tP 0. Initially,

at iteration 0, we set the modified costs as follows:

�cckð0Þij ¼ ckij þ kvkaj
fj
qj
; 8ði; jÞ 2 ACD; k 2 K; ð16Þ

�cckð0Þji ¼ ckji þ kvkð1� ajÞ
fj
qj
; 8ðj; iÞ 2 ADC; k 2 K; ð17Þ

�cckð0Þlj ¼ cklj þ kvk aj
fj
qj

�
þ ð1� alÞ

fl
ql

�
; 8ðl; jÞ 2 ADD; k 2 K; ð18Þ

where k is a parameter and

aj ¼
nj

nj þ Dj
; nj ¼

X
k2K

vk
X
i2Cs

j

ski ; Dj ¼
X
k2K

vk
X
i2Cd

j

dk
i ; 8j 2 D:

Here, njðDjÞ is the maximum volume that might transit through depot j from all

supply (demand) customers adjacent to it. Thus, aj and ð1� ajÞ approximate the

fraction of the total volume in-transit at depot j which can be imputed to supply and
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demand customers, respectively. They are used to calibrate the cost on the corres-

ponding arcs. In the sequential algorithm reported in [8], k is set to 1, while in the

parallel algorithm described in Section 4, parameter k takes different values in the

interval [0,1] in order to generate different starting solutions.

Based on the optimal solution to the MMCF with modified costs obtained at the
previous iteration, the linear costs are updated as follows at every iteration t > 0.

First, we consider the arcs which are incident only to depots that are used for in-tran-

sit flows (i.e., X t�1
j > 0 for any depot j at the initial or terminal end of the arc):

�cckðtÞij ¼ ckij þ vkaj
fjeXX t�1
j

; 8ði; jÞ 2 ACD; k 2 K; ð19Þ

�cckðtÞji ¼ ckji þ vkð1� ajÞ
fjeXX t�1
j

; 8ðj; iÞ 2 ADC; k 2 K; ð20Þ

�cckðtÞlj ¼ cklj þ vk aj
fjeXX t�1
j

 
þ ð1� alÞ

fleXX t�1
l

!
; 8ðl; jÞ 2 ADD; k 2 K: ð21Þ

It is easy to verify that this cost update satisfies (14). For arcs with at least one

unused incident depot, we cannot apply formulas (19)–(21), since eXX t�1
j ¼ 0 for at

least one incident depot j. In this case, the costs of the corresponding arcs are up-

dated as follows:

�cckðtÞij ¼ bmax ~ccð0Þ;max
0<s<t

�cckðsÞij jeXX s
j

n�
> 0
o�

; 8ði; jÞ 2 ACD; k 2 K; ð22Þ

�cckðtÞji ¼ bmax ~ccð0Þ;max
0<s<t

�cckðsÞji jeXX s
j

n�
> 0
o�

; 8ðj; iÞ 2 ADC; k 2 K; ð23Þ

�cckðtÞlj ¼ bmax ~ccð0Þ;max
0<s<t

�cckðsÞlj jeXX s
j ;
eXX s
l

n�
> 0
o�

; 8ðl; jÞ 2 ADD; k 2 K; ð24Þ

where ~ccð0Þ ¼ maxði;jÞ2A; k2K �cc
kð0Þ
ij , and b > 0 is a parameter. When b ¼ 1, this formula

sets the arc cost either to the largest cost at iteration 0 or to the largest arc cost that

led to the use of all incident depots for in-transit flows in the previous iterations (a

similar rule is used in [12]). Setting b to a large value virtually closes the corres-

ponding arc; however, when b is relatively small, this decision might be reverted in

the following iterations. In our implementation, b was set to 100.

The SS procedure is stopped when there are no modifications in the costs from

one iteration to the next. At each iteration, a feasible solution ~xx is obtained, and

an upper bound is computed according to Eq. (12). The best upper bound found dur-
ing the search is kept in variable Z�. A local improvement step is performed at the

end of the procedure, using ~yy, which is the depot configuration corresponding to

the best overall solution. It consists in solving the MMCF with the original linear

costs �cc ¼ c and �yy ¼ ~yy, thus obtaining a new feasible solution ~xx. If Zð~xx; ~yyÞ improves
upon Z�, which is often the case, it replaces it. The final solution produced by the

SS procedure corresponds to the best upper bound, Z�.
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3.2. Variable neighborhood descent

In this section, familiarity with local search methods is assumed. For an introduc-

tion to local search, variable neighborhood search and VND, the reader is referred to

[10]. Basically, VND explores the space of configurations of open/closed depots, by
setting the y variables to 0 or 1 (see [5,8,9], for other approaches of this type in the

context of tabu search). For each configuration, the flows on the customer–depot,

depot–customer and depot–depot arcs are obtained by solving the associated

MMCF. A particular configuration of open/closed depots with the corresponding

flows represents a solution to the problem.

Since the customers are only linked to a subset of potential depot sites, some cus-

tomers may not be connected to any open depot for a given configuration of depots,

leading to infeasibility. Likewise, the total capacity of the open depots may be insuf-
ficient to carry the total flow. An artificial depot of infinite capacity is thus added to

the network and linked to all customers with high arc costs, to ensure that no flow

will go through these arcs, unless there is no feasible alternative. In this way, the

search is allowed to explore the infeasible domain (although it always keeps track

of the best feasible solution).

3.2.1. Neighborhood

Two different neighborhood structures are considered. The first neighborhood
consists in moves where the value of a single y variable is set to 0 by closing a

depot (DROP). Its complexity is OðmÞ, where m is the number of depots. The second

neighborhood is based on SWAP moves where two variables are modified by simul-

taneously closing a depot and opening another one. This neighborhood is of com-

plexity Oðm2Þ.
The motivation for this double neighborhood scheme stems from the following

observations. For most problems, good solutions have approximately the same num-

ber of open depots. The DROP neighborhood is thus a good medium to find the
‘‘right’’ number of open depots and get close to high quality solutions. Then, the

SWAP neighborhood explores alternative configurations with the number of open

depots found with DROP.

The evaluation of a move, which generates a new configuration of depots, is per-

formed by solving the associated MMCF. As this evaluation is computationally ex-

pensive, filtering techniques are developed in the case of the SWAP neighborhood.

These filtering techniques are based on approximation measures which are used to

rank the moves from best to worst. Then, only the top moves according to the ap-
proximation are evaluated exactly with CPLEX, among which the best one is finally

taken (see [8] for a detailed description of these approximation measures). In the cur-

rent implementation, 64 moves are considered, as explained in Section 5.

In the case of the DROP neighborhood, which is of lower complexity, all moves

are evaluated exactly. This is desirable as every opportunity to close a depot must be

exploited to generate a good solution, due to the large savings in fixed costs. This

is similar to some vehicle routing applications where saving a vehicle is of premium

importance.

B. Gendron et al. / Parallel Computing 29 (2003) 591–606 597



3.2.2. Search strategy

The VND search strategy is relatively simple and corresponds to a pure local de-

scent, but with alternating neighborhood structures. Starting from an initial solution

obtained through the adaptive memories (see Section 4), it proceeds as follows:

1. Perform a descent with DROP until a local minimum is reached.

2. Perform a descent with SWAP until a local minimum is reached.

3. Repeat Steps 2 and 3 until no more improvement is obtained.

When a local minimum is reached with DROP, we thus switch to the SWAP

neighborhood. This is repeated until no more improvement to the current solution

is achieved.

4. A parallel hybrid framework

In this section, we propose a framework for a coarse grained master–slave parallel

implementation of a hybrid algorithm using the SS and VND heuristics. This imple-

mentation is based on adaptive memories [15,17] which are aimed at providing new

starting points for both SS and VND. In the case of SS, the flow structure of

the starting solution is used to set the initial modified costs. In the case of VND,
the starting point is used in a more standard way by providing an initial configura-

tion of depots (i.e., a particular setting for the y variables) in the search for better con-
figurations.

A natural way to parallelize adaptive memory algorithms is a master–slave

scheme in which the master process manages the memories and a fixed number of

slave processes perform the computations [1]. Basically, the master receives new so-

lutions from the slaves, and stores them into the memories (if they are good enough).

It also fetches solutions from the memories to feed the slaves with new starting so-
lutions. This is more precisely described in the following.

4.1. Communication scheme

The communication scheme is illustrated in Fig. 1 with two slaves, one master,

and the two memories associated with SS and VND, respectively. In Phase I, only

SS processes are invoked. Initially, each SS process receives a number i between 1

and the number of slaves s in order to set parameter k to i=s for the initialization
of the modified linear costs. The SS processes are used in Phase I to fill the SS

and VND memories. Namely, the best solutions produced by the SS processes are

stored in the SS Memory (and are used by VND in Phase II). Also, a number of in-

termediate solutions produced during the iterative SS procedure are stored in the

VND memory (and are used by SS in Phase II). More precisely, at each iteration

k, the current intermediate solution is stored in memory with probability 1=k. Inter-
mediate solutions obtained in earlier iterations are thus more likely to be found in

the VND memory. The rationale is that SS is more likely to follow a different im-
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provement path in Phase II if the intermediate solutions are not too close from the
best solution found.

Phase II starts when at least qs solutions have been generated, with q equal to 5 in
our computational experiments. At this point, all SS processes terminate and a pro-

portion of them, defined by the user, become VND processes (in the figure, one of

the two SS processes becomes a VND process). During Phase II, the VND processes

get starting solutions from the SS memory and feed the VND memory with their

final solutions. Conversely, the SS processes get starting solutions from the VND

memory and feed the SS memory with their final solutions. In the degenerate cases
where all processes are SS or VND, the two pools of solutions are virtually merged

into a single memory (through a parameter which sets the probability of storing or

fetching a solution from one memory or another to 0.5; otherwise, this parameter

forces the standard behavior depicted in Fig. 1).

4.2. Adaptive memories

The slaves collaborate by communicating information about new solu-
tions through the SS and VND memories. These memories are adaptive, as they

SS

PHASE I

PHASE II

VND

Memory VNDMemory SS

masterslave

SS SS

intermediate solutions

final solutions

Fig. 1. Parallel search framework.

B. Gendron et al. / Parallel Computing 29 (2003) 591–606 599



are continuously updated in order to contain the best solutions found during the

search. Namely, a new solution returned by SS or VND is stored in the correspond-

ing memory if:

• the memory is not filled yet;
• the memory is filled, but the new solution is better than the worst solution in

memory; in this case, the new solution replaces the worst one.

When a solution is fetched from a memory to provide a new starting point for SS

or VND, a probabilistic selection scheme, biased in favor of the best solutions, is

used. Assuming l different solutions in memory, the best one (rank 1) is associated

with some Zmax value, while the worst one (rank l) is associated with some Zmin value.

The values associated with the remaining solutions are then equally spaced be-
tween Zmin and Zmax. More precisely, the value Zi for the solution of rank i is com-
puted as:

Zi ¼ Zmax � ðZmax � ZminÞ
i� 1

l� 1
; 16 i6 l:

The probability pi of selecting the solution of rank i is then:

pi ¼
ZiPl
j¼1 Zj

; 16 i6 l:

Assuming that Zmin þ Zmax ¼ 2, the selection bias in favor of the best solution can

be increased by setting the Zmax value closer to 2, or reduced by setting its value closer
to 1 [18]. In the current implementation, each memory contains at most l ¼ 15 solu-

tions, with Zmin ¼ 0:5 and Zmax ¼ 1:5.
To favor diversification, a starting solution taken from a memory is first slightly

perturbed before being processed by SS or VND. Namely, a number of randomly

chosen depots (among the closed ones) are opened. Similarly, a number of ran-

domly chosen depots (among the open ones) are virtually closed by putting a high
penalty on their incident arcs. This is done by multiplying the cost of each arc by

1000. In the latter case, the depots are not definitively closed, to prevent infeasibility

due to insufficient capacity. The number of depots to be opened, as well as the num-

ber of depots to be virtually closed, is chosen in the interval [5,10] (we assume that

all instances have more than 10 depots). After this perturbation, the associated

MMCF is solved to determine the initial flow structure and its associated depot con-

figuration.

5. Computational results

In this section, computational results are reported on a set of randomly generated

test problems. First, the problem instances are introduced; then, the performance

of the parallel implementation is reported. All tests were run on 400 MHz Utra-

Sparc II processors, with an individual processor dedicated to each process. The
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MPI software (from Sun HPC Cluster Tools 3.1) was used to handle the communi-

cations among the processes. The MMCF subproblems were solved with CPLEX

6.6 [11].

5.1. Problem instances

The problem generator for creating the test instances if fully described in [8]. In

the following, we summarize the main points.

Customer and depot locations. The rectangular area of interest is divided into a

certain number of customer zones, where each zone is a 100� 100 square in the Eu-

clidean plane. The total number of customers is distributed among the zones, de-

pending on their type (i.e., high, medium or low-density). Depot zones are

centered at the intersection of four customer zones; the depots are then distributed
among the depot zones according to the density type of the four intersecting cus-

tomer zones. Fig. 2 is an example based on a nh � nv ¼ 3� 2 grid of customer zones

(and with the depot zones shown with dashed lines).

Linear and fixed costs. The fixed cost to open and operate a depot is set to a basic

value randomly chosen in the interval [1000, 2000]. This value is then multiplied by a

scaling factor sf to put more or less emphasis on the fixed costs versus the linear

costs. The linear cost for each arc–commodity pair is based on the Euclidean dis-

tance multiplied by a commodity-dependent factor which, for each commodity, is
an integer randomly chosen between 1 and 10 (for a given commodity, the same

number is used on all arcs). For customer–depot or depot–customer arcs, the linear

cost is actually the Euclidean distance between the two nodes multiplied by the com-

modity-dependent factor. For depot–depot arcs, the linear cost is the Euclidean dis-

tance multiplied by the commodity-dependent factor and by 0.6, to take into account

the economies of scale obtained through consolidation.

Demands and supplies. Each customer zone is defined as a supply, demand or

balanced zone. These three types are distributed among the high, medium and

Fig. 2. Customer and depot zones.
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low-density zones, at their pro-rata. A mean demand value �dd, which is the same for

all commodities, is used to assign a demand dk
i (or supply ski ) to each customer i for

commodity k. Basically, �dd is randomly perturbed by 10% to 30% to generate different

values (see [8] for details).

Capacities. The volume of one unit of commodity is an integer randomly chosen
between 1 and 20, for each commodity k 2 K. Assuming that V ¼

P
k2K v

k
P

i2Cs ski is
the maximum volume that might transit through all depots, the capacities are gene-

rated in such a way that
P

j2D qj � V =c, where c 2 ð0; 1Þ is a user-supplied parame-

ter. When c ! 1 the problem is more constrained and conversely. Values between 0.2

and 0.4 are indicated: higher values lead to infeasible instances, while lower values

lead to virtually uncapacitated problems.

Based on the above characteristics, the following parameter values were used to

generate the problem instances:

• number of customers (n): 500,
• number of depots (m): 200,
• number of commodities (p): 20,
• number of customer zones (nh � nv): 3� 2 (dense), 4� 3 (sparse),

• fixed cost multiplier (sf ): 1000, 5000,
• mean demand value for each commodity (�dd): 100,
• capacity tightness parameter (c): 0.3.

Thus, four different types of problems are found in the test set, depending on the

number of customer zones and the fixed costs for operating the depots. For each type

of problems, there are 10 different instances.

5.2. SWAP neighborhood

One parameter of VND that deserves a particular attention is the number of
SWAP moves that are evaluated exactly at each iteration. The algorithm is sensitive

to this value, because SWAP is aimed at identifying a good configuration for a given

number of open depots. Preliminary experiments have shown that a neighborhood

size of about 60 is indicated for the instances under consideration. Smaller values

do not allow a sufficiently aggressive search, while larger values are too computation-

ally expensive and severely limit the total number of iterations. In fact, we have cho-

sen a value of 8� 8 ¼ 64. Here, a SWAP is seen as a DROP followed by some ADD

move. Consequently, we consider the eight best depots to be closed (based on DROP
approximations [8]), and for each one of them, we consider the eight best depots to be

opened (based on ADD approximations [8]). Those 64 SWAP moves are then evalu-

ated exactly with CPLEX.

5.3. Distribution of processes

In this subsection, we explore the impact of various distributions of processes

among SS and VND during Phase II. To this end, 16 processors have been used
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(plus the master). The following SS/VND distributions have been considered, where

each number is the fraction of processes dedicated to SS or VND, respectively: 1/0,

0.75/0.25, 0.5/0.5, 0.25/0.75 and 0/1. Note that the distributions 1/0 and 0/1 corres-

pond to degenerate cases where all processes are SS or VND, respectively. In every

experiment, the search was stopped after 1 h of wall clock time. The results are

reported in Table 1. The first column indicates the problem type a b, where a
corresponds to the nh � nv customer zones and b to the scaling factor sf for the

fixed cost. The remaining columns represent the various SS/VND process distribu-

tions.

Ten instances were generated for each type of problems and three different runs

were performed on each instance. The columns Avg. show the average of the 30 runs

performed over the 10 instances for each problem type, while the columns Best refer

to the average of the best run over each instance for each problem type. The last line

Overall is the average taken over all problem types. The values shown correspond to
the gap with the optimum (in percent). The latter was obtained with the parallel

branch-and-bound algorithm of CPLEX running on 16 processors for total CPU

times ranging from 120,784 s (approximately 34 h) to 10,000,000 s. In the latter case,

CPLEX was deliberately stopped after that amount of time on two specific instances

of type 3� 2_5000, without reaching or proving optimality.

The results in Table 1 indicate that (1) VND is essential for good solutions to

emerge and (2) combining SS and VND processes is beneficial, as the distribution

0.25/0.75 consistently leads to better results (except in the case of column ‘‘Best’’
for problem type 4� 3_1000). Additional experiments with 4 and 8 processors were

also performed with similar results. The distribution 0.25/0.75 was thus selected for

the next set of experiments.

5.4. Number of processors

The aim of this section is to study the impact of the number of processors on

solution quality. That is, for the same computational effort, is it better to work with

Table 1

Results with different SS/VND process distributions

Problem

type
SS/VND

1/0 0.75/0.25 0.5/0.5 0.25/0.75 0/1

Average Best Average Best Average Best Average Best Average Best

3� 2_1000 0.41 0.40 0.31 0.23 0.34 0.28 0.29 0.18 0.30 0.23

3� 2_5000 0.45 0.27 0.32 0.18 0.30 0.20 0.25 0.09 0.30 0.19

4� 3_1000 0.33 0.32 0.24 0.16 0.26 0.18 0.21 0.16 0.22 0.13

4� 3_5000 0.45 0.38 0.28 0.16 0.25 0.18 0.25 0.14 0.28 0.21

Overall 0.41 0.34 0.29 0.18 0.29 0.21 0.25 0.14 0.28 0.19
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a smaller or a larger number of processors? In the following, a new set of experi-

ments was performed with 4, 8 and 16 processors (plus the master). To obtain

an equivalent amount of computational work, the experiments with 16 processors

were run for one hour of wall clock time, while those with 8 and 4 processors were

run for two and four hours of wall clock time, respectively, always using the 0.25/

0.75 distribution. The results are summarized in Table 2, using a format similar to

Table 1.

As indicated in bold, an improvement is observed with an increasing number of
processors. Note that more processors running in parallel allows for a higher ‘‘re-

freshment’’ rate of the adaptive memories, thus leading to a more diversified search.

Given that SS is combined with a relatively simple VND local search, it is particu-

larly important for the adaptive memories to provide starting points that represent

a good sampling of the search space. This is better achieved with a larger number

of processors.

Finally, it is worth noting that the proposed approach has allowed us to find bet-

ter solutions than those obtained in [8] with a tabu search heuristic. In the latter case,
the best reported gaps on problem types 3� 2_1000, 3� 2_5000, 4� 3_1000 and

4� 3_5000 were equal to 0.31%, 0.18%, 0.33% and 0.29%, respectively (often using

substantially larger computation times).

6. Conclusion

A parallel hybrid framework, involving SS and VND, was developed to address a
multicommodity capacitated location problem with balancing requirements. The

proposed framework introduces a new cooperative scheme where both SS and

VND procedures feed each other with new starting solutions through adaptive me-

mories. The results show that combining SS and VND within the parallel hybrid

framework provides better quality solutions than SS or VND alone. Also, for the

same amount of computational work, a larger number of processors is indicated,

Table 2

Results with different numbers of processors

Problem

type
16 processors 8 processors 4 processors

1 h 1 h 2 h 1 h 4 h

Average Best Average Best Average Best Average Best Average Best

3� 2_1000 0.29 0.18 0.35 0.30 0.32 0.26 0.42 0.36 0.36 0.31

3� 2_5000 0.25 0.09 0.33 0.17 0.27 0.14 0.31 0.21 0.23 0.09

4� 3_1000 0.21 0.16 0.27 0.22 0.26 0.21 0.30 0.22 0.27 0.19

4� 3_5000 0.25 0.14 0.32 0.22 0.31 0.18 0.38 0.29 0.34 0.25

Overall 0.25 0.14 0.32 0.23 0.29 0.20 0.35 0.27 0.30 0.21
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as it leads to a more diversified search. The proposed approach has allowed us to

find the best solutions to date on our test instances.
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